Blog Archives

Dr. Marvin Minsky: Building Intelligent Machines

Most of you, have probably heard about Dr. Marvin Minsky , one of the most influential authorities inside Cognitive Science. Co-founder of the Massachusetts Institute of Technologies AI laboratory. In my opinion, he is one of the most intelligent thinker I have ever heard.

This is a talk in 2009 in which Marvin Minsky tries to explain why we need intelligent machines and what we can expect from them. His research group has been working on cognitive architectures trying to develop better intelligent machines using AI.  Although it is a few years old,  it is one of the most interesting and funny  talks I have experienced so far, and I was able to find it recently on iTunes.

Education is no good, unless you teach them to question it. And it is not popular.

Sarcastic Marvin Minsky begins talking about why we need intelligent machines. He claims that if we knew how to build a machine that could think more or less the same way that people can, we should surely understand its behaviour, being capable in the future to know how to fix and replace all of this machines parts and equally all of the the brain’s ones to. In his own words “Immortality would be easy to obtain”  This way we would be able to make backup copies of our brains and download and upload them into this machines.

One thing he points out and which I can not do anything but totally agree, is that in the Universities, high-schools and collages, people are developing again and again the same kinds of robots. In his own words” You can learn a lot from doing this, like that if you step on connectors …. they brake.” 🙂 People should be working on something more useful. For example, robot-soccer might be beautiful to watch for a few minutes but it is useless and has not much value for humanity. Why not try to research on robots that do something more useful?

The best is the enemy of the good. Don’t spend a lot of time trying to find the best way. Find six good ways, it will take you half the time and your machine will be six times better when the environment changes

Dr. Minsky remarks that the ambiguity of language is really a useful tool we use to learn, as it is possible to obtain a better result at the end by misunderstanding what you where initially told. As when somebody realises a different idea from something you have read before, but you didn’t thought of that at that moment. But now, that you have been told about it, the idea seems really plausible. It is clear that people learn in various ways, and that people develop different ways to learn. I agree with Dr. Minsky, that we should focus our efforts not on education as we are doing it right now, but more on understanding ways to learn and improving old commonly used techniques as reinforcement by reward. Instead, we should better ask ourselves why some kids learn more from the same experience than others and improve our ways of  teaching how to learn.

If you can tell yourself what you did, you might misunderstand it and do something better next time

Talking about AI, Dr. Minsky gives a brief history description through the first AI to symbolic calculation. How this development has provided powerful tools for mathematic integration using Matlab or Mathematica. But right now, computers can only solve logical formulated problems and can not operate by analogy. He explains that there are not enough people researching on example based reasoning, which he believes will be the future of computer programming and instead that to much effort and money is spent on neural networks, statistical learning, genetic algorithms…which will inevitably pass away and become obsolete.

Thousands of people are doing something because they see thousands of other people doing it, so therefore it must be good. I know only about twenty or thirty people in the hole world who are working on how to get computers to do anything like ordinary common sense reasoning and thats where I think, the future lays.

Through the whole lecture Dr. Marvin gives his point of view on a bunch of different topics and problems of society, science, education, politics, even sports, in a very sarcastic way. Although I do not agree with all of them, I have found them really funny and makes the lecture easy to listen and understand.

On a menu, when you have a choice I always order chicken this days, because your children won’t have any chicken to order

For anyone who is interested in reading Dr. Minsky: The Emotion Machine

Building Intelligent Machines

Sparking Minds

I came across the other day a really interesting project named FIONA. Maybe some of you have heard of it. You can check out its cool web here.

Project Fiona or The community for the creation of the artificial mind, aims as their developers explain, to be an online platform to create the next generation of virtual avatars. Many blog and internet users knows what an avatar is, basically we could define it as a personalized graphic file or rendering that represents a computer user.

By what The community calls sparks which trends to be something like little applications that can contribute to the platform uploading their killer feature, a specific behavior, an amazing character or the best of their knowledge in a topic.

With this type of technology we can expect in the near future a new generation of avatars which might be able to export your own ideas, knowledge even your personality in ways only science fiction visionaries dreamt about. Virtual teachers could attend to virtual classes, this technology could change the way we understand meetings, they could be used as interfaces for waiters, sellers and I can imagine more and more other possibilities…

I have not been able to test the platform, neither the interface or the sparks programming, I hope to have some time in the near future to test it (it looks it has a nice and friendly interface to work with, see second video) so I’m not able to judge right now if FIONA’s avatars can really manage complex tasks and develop real, clear conversations and interactions, but I believe that this project can be a great platform to test if this are real actual possibilities or only steps towards future technologies, time will tell.

You are able to find a few tutorials for beginners on their website and youtube like this one:

Robots with a mind of their own

Divide and conquer is a common technique used by strategists in many fields. Comprehension usually involves understanding the details and it means usually better adaptation to the “environment”. I’ll try to explain myself with an example: When trying to face a problem in any science  without understanding the main physics involving all the procedure. You might have encountered, you are able to resolve that specific problem or even a similar one but, when the “environment changes”, by this I mean that the problem differs from the initial one in a simpler way, but in a way that is such that your abstract idea of the physics confuses you and makes you solve it the wrong way. But instead anyone who already understands that physic fact will easily evolve its previous answer the right way.

Imagine you memorized the math table for two, then you will be able to accomplish any multiplication relying number 2. When asked to multiply 3*2 you are able to answer easily, but if the question is 3*3 you wont. But instead if you learn the math table for two, understanding that 2*5 is five times two (2+2+2+2+2) you will be able to answer 3*8 immediately. And you might be able to infer that 8/2 equals 4 because there are two fours “inside” an eight (4*2) (4+4). By mathematical terms you could say, this situation is more adapted to a changeable mathematical environment.

For many years control engineers have tried to reduced complex, abstract processes to simpler and more achievable ones, which interact with each other to develop the more complex process which englobes the simpler ones. This way using feed-back loops engineers are able to automate a control system towards its goal.

As robots usually are really complex systems, they are very difficult to control. Interactions between its components can easily lead to malfunctions that can make impossible for the system to achieve it´s desired goal. Now, new simpler, adaptable robots are being researched by Amsterdam engineers working inside an European project, a great idea to solve complex difficulties, making robots which will be able to interact with each other in incredible ways (show by the video)

I imagine future robotics, as multiple interactive robots specialised in little tasks working in groups, being capable of sharing information and developing solutions as a group. Understanding perception will be very important for this robots, in order to be able to communicate to each other its own situation and the final group’s goal, in which I believe cognitive science’s and the study of social interactions will clearly help the research of new cognitive architectures, which will allows us in the near future to master new control techniques for this new multiple robot platforms.

For now we will have to settle with this incredible mock-up.

The tale of Daniel Tammet: The boy with the incredible brain

I remember a few years ago I came across with a documentary called something like “Incredible minds“. It was about a man called Daniel Tammet which was an autistic savant, able to work out great numerical problems in an incredible way. I was really impressed, not only of what the documentary showed he was capable of, but more about the way he explained how he did it. He claimed he had never seen numbers the way, “others” did. Instead he was synaesthetic with numbers, he felt sensations related with them. And he claimed that when he was resolving a numerical problem he was really abstracting a form out of a mental image that the numbers involved sketched in his mind.

This made me wonder if the way maths were thought, were not the ideal way they should be. Or maybe, I understood maths in a way differently from the way others did. And when I say maths I mean any other subject or concept that might be studied. We mostly learn the most simple concepts by patters that are repeated constantly again and again and finally become kind of subconscious. Think, for example on math tables, or first vocabulary lessons in most foreign language classes you might have attended. Maybe, understanding the basics by repetition is not the most effective way to learn, even when infants seem to learn this concepts fast, I believe we don’t exactly make them know in a  meaningful way.

Understanding that your own-percepcion models any concept you might learn, it would be really interesting finding other ways of learning common concepts that could be a lot more powerful than the way it is done today. Researching on mental syndromes, synaesthetics and the way they understand the environment could help us open our eyes.

I came across, recently with this TED talk from Daniel Tammet that might be well self-explanatory about this ideas:

The tale of the Parasitic Wasp

“I cannot persuade myself that a beneficent and omnipotent God would have designedly created parasitic wasps with the express intention of their feeding within the living bodies of Caterpillars.”

Charles Darwin

I’m mainly an evolutionist. I have always felt astonished about how Darwin was able to synthesise nature’s complexity into a pattern of laws which were able to predict natures behaviour. Explaining, not only why all species where shaped by evolution, but more importantly why they had to evolve.

In order to fight the aggressive environment, billions of years of evolution, statistically made chemical components to associate into little cells and latter made those little cells interact and associate into more complex agents, which were more adapted in terms of fighting this environment and surviving. Those cells developed and specialised in order to execute tasks more easily and faster. At a large scale seems that perceiving and understanding the environment is vital for survival. Even more, looks like evolution had chosen to embrace abilities that could help to understand better the environment and cope with it. Seems that modelling the world, a perception of the world, is a common task of  the brain. Working as a filter of information so that it maximises energy, time…in order to efficiently survive.

I believe that the main propose of an autonomous agent is to “survive” against the environment. This has always been a great problem for autonomous robotics researchers. The environment is always changing, we are not able to predict all of the possible paths or possible problems, so we can not anticipate them. Even if this would be possible it would be to complex to try to analyse all of the information gathered.

Now, if evolution’s goal is survival of species and perception, world modelling and specialising of functionalities the tools which it uses to try to fight and cope the environment. I believe we should try to understand how this tools are implemented in order to develop better autonomous agents which can cope with this changeable environment.

Parasitic wasps grow inside of caterpillars in order to feed themselves, for some reason they have evolved this way in order to survive as an specie. This is only one little example of how “intelligent” evolution can be, although its result may seem strange and a little disgusting for a lot of us, for the parasitic wasp is really a great way of fighting the environment.